Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6941, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521832

RESUMEN

Univentricular heart anomalies represent a group of severe congenital heart defects necessitating early surgical intervention in infancy. The Fontan procedure, the final stage of single-ventricle palliation, establishes a serial connection between systemic and pulmonary circulation by channeling venous return to the lungs. The absence of the subpulmonary ventricle in this peculiar circulation progressively eventuates in failure, primarily due to chronic elevation in inferior vena cava (IVC) pressure. This study experimentally validates the effectiveness of an intracorporeally-powered venous ejector pump (VEP) in reducing IVC pressure in Fontan patients. The VEP exploits a fraction of aortic flow to create a jet-venturi effect for the IVC, negating the external power requirement and driveline infections. An invitro Fontan mock-up circulation loop is developed and the impact of VEP design parameters and physiological conditions is assessed using both idealized and patient-specific total cavopulmonary connection (TCPC) phantoms. The VEP performance in reducing IVC pressure exhibited an inverse relationship with the cardiac output and extra-cardiac conduit (ECC) size and a proportional relationship with the transpulmonary pressure gradient (TPG) and mean arterial pressure (MAP). The ideal VEP with fail-safe features provided an IVC pressure drop of 1.82 ± 0.49, 2.45 ± 0.54, and 3.12 ± 0.43 mm Hg for TPG values of 6, 8, and 10 mm Hg, respectively, averaged over all ECC sizes and cardiac outputs. Furthermore, the arterial oxygen saturation was consistently maintained above 85% during full-assist mode. These results emphasize the potential utility of the VEP to mitigate elevated venous pressure in Fontan patients.


Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Corazón Univentricular , Humanos , Hemodinámica , Arteria Pulmonar , Ventrículos Cardíacos , Cardiopatías Congénitas/cirugía , Modelos Cardiovasculares
2.
Cardiovasc Eng Technol ; 14(3): 428-446, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877450

RESUMEN

PURPOSE: The Fontan circulation carries a dismal prognosis in the long term due to its peculiar physiology and lack of a subpulmonic ventricle. Although it is multifactorial, elevated IVC pressure is accepted to be the primary cause of Fontan's high mortality and morbidity. This study presents a self-powered venous ejector pump (VEP) that can be used to lower the high IVC venous pressure in single-ventricle patients. METHODS: A self-powered venous assist device that exploits the high-energy aortic flow to lower IVC pressure is designed. The proposed design is clinically feasible, simple in structure, and is powered intracorporeally. The device's performance in reducing IVC pressure is assessed by conducting comprehensive computational fluid dynamics simulations in idealized total cavopulmonary connections with different offsets. The device was finally applied to complex 3D reconstructed patient-specific TCPC models to validate its performance. RESULTS: The assist device provided a significant IVC pressure drop of more than 3.2 mm Hg in both idealized and patient-specific geometries, while maintaining a high systemic oxygen saturation of more than 90%. The simulations revealed no significant caval pressure rise (< 0.1 mm Hg) and sufficient systemic oxygen saturation (> 84%) in the event of device failure, demonstrating its fail-safe feature. CONCLUSIONS: A self-powered venous assist with promising in silico performance in improving Fontan hemodynamics is proposed. Due to its passive nature, the device has the potential to provide palliation for the growing population of patients with failing Fontan.


Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Corazón Auxiliar , Humanos , Procedimiento de Fontan/efectos adversos , Arteria Pulmonar/cirugía , Hemodinámica , Vena Cava Inferior , Ventrículos Cardíacos/cirugía , Modelos Cardiovasculares , Cardiopatías Congénitas/cirugía
3.
Lab Chip ; 17(2): 293-303, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27934975

RESUMEN

In this paper, we propose a simple method to embed transparent reactive materials in a microfluidic cell, and to observe in situ the dissolution of the material. As an example, we show how to obtain the dissolution rate of a calcite window of optical quality, dissolved in water and hydrochloric acid (HCl). These fluids circulate at controlled flowrates in a channel which is obtained by xurography: double sided tape is cut out with a cutter plotter and placed between the calcite window and a non-reactive support. While the calcite window reacts in contact with the acid, its topography is measured in situ every 10 s using an interference microscope, with a pixel resolution of 4.9 µm and a vertical resolution of 50 nm. In order to avoid inlet influence on the reaction, a thin layer of photoresist is added on the calcite surface at the inlet and outlet. This layer is also used as a non reactive reference surface.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 041308, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20481718

RESUMEN

The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

5.
Phys Rev Lett ; 99(4): 048001, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17678407

RESUMEN

A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 1): 051306, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18233651

RESUMEN

An instability is observed as a layer of dense granular material positioned above a layer of air falls in a gravitational field [Phys. Rev. Lett. 99, 048001 (2007)]. A characteristic pattern of fingers emerges along the interface defined by the grains, and a transient coarsening of the structure is caused by a coalescence of neighboring fingers. The coarsening is limited by the production of new fingers as the separation of the existing fingers reaches a certain distance. The experiments and simulations presented are shown to be comparable both qualitatively and quantitatively. The characteristic inverse length scale of the structures, obtained as the mean of the solid fraction power spectrum, relaxes toward a stable value shared by the numerical and experimental data. Further, the response of the numerical model to changes in various model parameters is investigated. These parameters include the density of the grains, the shape of the initial air-grain interface, and the dissipation of the granular phase. Also, the growth rates of the bulk solid fraction and the air-grain interface are obtained from Fourier power spectra of the numerical data. This analysis reveals that the instability is never in a linear regime, not even initially.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...